Abstract

Rifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encoding the β subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus , even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis protocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml−1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.

Highlights

  • Antibiotic resistance is a worldwide problem and a threat to human well-b­ eing, with health, economic and social costs [1]

  • Three different rpoB mutations identified amongst nine spontaneous rifampicin-resistant strains

  • The mutations conferring the RifR phenotype were mapped by sequencing the 980 bp region of the rpoB gene containing the three main rifampicin-b­ inding clusters [2], the locus most frequently associated with this phenotype

Read more

Summary

Introduction

Antibiotic resistance is a worldwide problem and a threat to human well-b­ eing, with health, economic and social costs [1]. Results of studies of Escherichia coli [18], Mycobacterium tuberculosis [19] and Staphylococcus aureus [20] indicated that mutations in rpoB can have variable influence on cell fitness, with some mutations responsible for a fitness burden and others with low or no effect on fitness. Variability of these effects typically does not correlate with the magnitude of resistance, but in E. coli it has been shown to be associated with modification of the mechanism of transcription and with the presence of compensatory mutations [18].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.