Abstract

In this article, we present a construction of a spanner on a set of n points in Rd that we call a heavy path WSPD spanner. The construction is parameterized by a constant s>2 called the separation ratio. The size of the graph is O(sdn) and the spanning ratio is at most 1+2/s+2/(s−1). We also show that this graph has a hop spanning ratio of at most 2lg⁡n+1.We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex v of the graph to store O(deg⁡(v)log⁡n) bits of information, where deg⁡(v) is the degree of v. The routing ratio is at most 1+4/s+1/(s−1) and at least 1+4/s in the worst case. The number of edges on the routing path is bounded by 2lg⁡n+1.We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension λ, the heavy path WSPD spanner has size O(sλn) where s is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most 1+(2+ττ−1)/s+1/(s−1) in the worst case, where τ≥11 is a constant related to the doubling dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.