Abstract

Compared with real-time control, global optimization has a great advantage to improve the fuel economy due to considering the whole drive condition in advance. However, on-board controller doesn’t support the global optimization with a large amount of calculation. Remote data communicating technology provides a platform to make global optimization applied to on-board control at a pre-known driving cycle. In this paper, a route-based optimal control strategy for the real-time energy management of parallel hybrid electric vehicles is developed. The proposed control strategy employs computers to optimize the power-split and engine stop-start control based on the minimum principle at a predicted driving cycle. Guiding controller provides real-time control with CAN bus communication. The experiment results prove the proposed strategy has a 10% fuel economy improvement than rule-based control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.