Abstract

We performed molecular dynamics simulations of dilute and semidilute polyelectrolyte solutions without hydrodynamic interactions to study Rouse dynamics of polyelectrolytes. Polyelectrolyte solutions are modeled by an ensemble of bead−spring chains of charged Lennard-Jones particles with explicit counterions. The simulations were performed for partially and fully charged polymers with the number of monomers N = 25−373. We show that the simulations of the Rouse dynamics give qualitatively similar results to the experimentally observed dynamics of polyelectrolyte solutions. Our simulations showed that the chain relaxation time depends nonmonotonically on polymer concentration. In dilute solutions, this relaxation time exhibits very strong dependence on the chain degree of polymerization, τ ∼ N3. The chain relaxation time decreases with increasing polymer concentration of dilute solutions. This decrease in the chain relaxation time is due to chain contraction induced by counterion condensation. In the semidi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.