Abstract

This paper presents results of an experimental research conducted to study roughness effects downstream of a forward facing step (FFS). A rough surface and a hydraulically smooth surface were used as a rough-FFS and a smooth-FFS, respectively. The upstream condition was kept smooth. Particle image velocimetry (PIV) technique was used for the velocity measurements. The Reynolds number based on the step height (h) and freestream velocity of the approach flow was kept constant at 8685. The results show that the mean reattachment length for the smooth-FFS (SM-SM) is 1.9h. Roughness reduced the peak values of the streamwise mean velocity, Reynolds shear stress and turbulent kinetic energy by 3%, 45% and 16.7% respectively in the recirculation region. In the early redevelopment region, roughness also reduced the peak values of turbulent kinetic energy and the Reynolds shear stress by 41% and 22% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.