Abstract

We investigate lasing of a N_{2} gas induced by intense few-cycle near-IR laser pulses. By the pump-probe measurements, we reveal that the intensity of the B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+} lasing emission of N_{2}^{+} oscillates at high (0.3-0.5PHz), medium (50-75THz), and low (∼3 THz) frequencies, corresponding to the energy separations between the rovibrational levels of the A^{2}Π_{u} and X^{2}Σ_{g}^{+} states. By solving the time-dependent Schrödinger equation, we reproduce the oscillations in the three different frequency ranges and show that the coherent population transfer among the three electronic states of N_{2}^{+} creates the population inversion between the B^{2}Σ_{u}^{+} and X^{2}Σ_{g}^{+} states, resulting in the lasing at 391nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.