Abstract

In this letter, an angular trajectory tracking controller for a twisted polymeric fiber (TPF) actuator by the combination of a model-based feed-forward and estimated temperature feedback is proposed. TPF actuator is one of the soft actuators that can produce a rotational motion, which is made by twisting a nylon yarn and thermally treating it. Adding a feed-forward controller with a feedback controller makes it possible to reduce a phase lag and realizes a higher frequency response compared with using only the feedback controller when performing a time-dependent trajectory tracking. First, temperature–angle, resistance–temperature, and voltage–temperature models are composed, respectively, and then combined in order to design a feedforward controller. Next, parameter estimation is performed through experiments using the prototype of a rotational actuation module. Finally, trajectory-tracking experiments are conducted using a prototype to demonstrate that the proposed method can improve the tracking performance by reducing the phase lag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.