Abstract

AbstractThe rotation of an inertialess ellipsoidal particle in a shear flow of a Newtonian fluid has been firstly analyzed by Jeffery [1]. He found that the particle rotates such that the end of its symmetry axis describes a closed periodic orbit. Based on the balance equation of the angular momentum we derived the equation of rotational motion of a cylindrical particle, that is suspended in a plane shear flow field of a viscous fluid, and solved numerically. The rotary inertia is taken into account. The solution is compared with the rotation of a slender particle. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.