Abstract

Rotating machinery is widely applied in industrial applications. Fault diagnosis of rotating machinery is vital in manufacturing system, which can prevent catastrophic failure and reduce financial losses. Recently, Deep Learning (DL)-based fault diagnosis method becomes a hot topic. Convolutional Neural Network (CNN) is an effective DL method to extract the features of raw data automatically. This paper develops a fault diagnosis method using CNN for InfRared Thermal (IRT) image. First, IRT technique is utilized to capture the IRT images of rotating machinery. Second, the CNN is applied to extract fault features from the IRT images. In the end, the obtained features are fed into the Softmax Regression (SR) classifier for fault pattern identification. The effectiveness of the proposed method is validated using two different experimental data. Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.