Abstract

We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond current experimental capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.