Abstract

Abstract In conventional ultrasonic machining (USM), brittle materials are machined by using ultrasonic impacts on the workpiece, through a medium of abrasive slurry. In this paper a new cutting process that resulted due to introduction of an additional parameter, namely the rotation of the workpiece during the machining, is presented. This may be called ‘rotary ultrasonic machining’. The material removal rates (MRR) in rotary USM are up to four times those in conventional USM. The MRR increases with increase in speed of rotation of workpiece. An explanation for the superior performance of rotary USM is presented. The performance of rotary USM as a function of static load, abrasive grain size, concentration of abrasive slurry, diameter of tool and ratio of diameters of hollow tools, is studied and the parameters are optimized for minimum machining time or maximum material removal rate. Comparisons are made with conventional USM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.