Abstract

Strain CN29T, isolated from the stem of 5- to 6-year-old Populus tomentosa in Shandong, China, was characterized using a polyphasic taxonomic approach. Cells of CN29T were Gram-stain negative, aerobic, nonspore-forming, and nonmotile coccoid. Growth occurred at 20-37°C, pH 4.0-9.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CN29T was closely related to members of the genus Roseomonas and closest to Roseomonas pecuniae N75T (96.6%). This classification was further supported by phylogenetic analysis using additional core genes. The average nucleotide identity and digital DNA‒DNA hybridization values between strain CN29T and Roseomonas populi CN29T were 82.7% and 27.8%, respectively. The genome size of strain CN29T was 5.87Mb, with a G + C content of 70.9%. The major cellular fatty acids included summed feature 8 (C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c and C16:0. The major respiratory quinone was Q-10. The polar lipids were phosphatidylcholine, aminolipid, phosphatidylglycerol, and diphosphatidylglycerol. Strain CN29T can utilize acetate as a carbon source for growth and metabolism. Additionally, it contains acid phosphatase (2-naphthyl phosphate), which catalyzes the hydrolysis of phosphoric monoesters. The CN29T strain contains several genes, including maeB, gdhB, and cysJ, involved in carbon, nitrogen, and sulfur cycling. These findings suggest that the strain may actively participate in ecosystem cycling, leading to soil improvement and promoting the growth of poplar trees. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain CN29T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas populi sp. nov. is proposed. The type strain is CN29T (= JCM 35579T = GDMCC 1.3267T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.