Abstract

AbstractThree-dimensional structure of protein gives important information about protein’s function. Since it is time-consuming and costly to find the structure of protein by experimental methods, estimation of three-dimensional structures of proteins through computational methods has been an efficient alternative. One of the most important steps for the 3-D protein structure prediction is protein secondary structure prediction. Proteins which contain different number and sequences of amino acids may have similar structures. Thus, extracting appropriate input features has crucial importance for secondary structure prediction. In this study, a novel model, ROSE, is proposed for secondary structure prediction that obtains probability distributions as a feature vector by using two position specific scoring matrices obtained by PSIBLAST and HHblits. ROSE is a two-stage hybrid classifier that uses a one-dimensional bi-directional recurrent neural network at the first stage and a support vector machine at the second stage. It is also combined with DSPRED method, which employs dynamic Bayesian networks and a support vector machine. ROSE obtained comparable results to DSPRED in cross-validation experiments performed on a difficult benchmark and can be used as an alternative to protein secondary structure prediction.KeywordsProtein secondary structure predictionProtein structure predictionMachine learningDeep learningRecurrent neural network

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.