Abstract

Graphene films with controllable thicknesses, electrical and optical properties are fabricated on variable substrates at room temperature by a simple, efficient and low-cost solution-based method. This process is completely compatible with flexible substrates (polyethylene terephthalate, PET), fluorine-doped tin oxide (FTO) conductive glasses, and even glassy carbon electrodes. The graphene films show excellent conductivity and electrochemical activity. The films prepared on FTO conductive glasses, as an alternative to ubiquitously employed platinum-based counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), are demonstrated. The results suggest a new start in the direction of graphene CEs for the development of next generation of optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.