Abstract

The deposition of gold-colored titanium nitride films without applying substrate heating is of significant interest due to the increasing demand for decorative coatings on temperature-sensitive three-dimensional substrates. Here, the energetic impact of Nb1+ ions during the deposition of TiN was achieved within a bipolar high-power impulse magnetron sputtering discharge operating on a Nb target. A separate titanium target was operated with direct current magnetron sputtering in the same reactive argon–nitrogen mixture. This process aimed to achieve a dense titanium nitride with the assistance of the niobium ion bombardment. The niobium controlled the phase formation and structure of the resulting Nb-containing TiN coating without needing external heating. The niobium ion bombardment during deposition increases the density of the titanium nitride coatings, promoting the formation of the cubic phase favored for its gold color and excellent mechanical and tribological properties, including HF1-level adhesion. Energy-selective mass spectrometer investigations revealed an increase in the flux and the energy of titanium ions due to momentum transfer from niobium ions to titanium neutrals in the plasma generated between the targets and the substrate. The approach introduced here paves the way for the formation of the cubic phase of Nb-doped TiN films without external heating, producing coatings with combined decorative and protective properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.