Abstract
(Bi0.95La0.05)(Fe0.97Mn0.03)O3/NiFe2O4 double layered thin film was prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi0.95La0.05)(Fe0.97Mn0.03)O3/NiFe2O4 double layered thin film. The (Bi0.95La0.05)(Fe0.97Mn0.03)O3/NiFe2O4 double layered thin film exhibited well saturated ferromagnetic (2Mr of 18.1emu/cm3 and 2Hc of 0.32kOe at 20kOe) and ferroelectric (2Pr of 60μC/cm2 and 2Ec of 813kV/cm at 866kV/cm) hysteresis loops with low order of leakage current density (4.5×10−6A/cm2 at an applied electric field of 100kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.