Abstract

The influence of external magnetic fields on the bending vibration of a one-side clamped iron filled carbon nanotube (CNT) has been analyzed theoretically and experimentally, with particular consideration given to the changes in the resonance frequency. The model involves the application of a modified Euler-Bernoulli-beam to analyze the zero field oscillatory behavior, as well as a magnetostatic approach used to determine the influence of any external field distributions. The experiments were conducted in situ in a scanning electron microscope. The measured magnetic moment of the nanowire at room temperature was μ = 2.1 × 10−14 Am2. Due to the favorable geometry of the CNT oscillator, the raw signal obtained using this approach is significantly more favorable than that with state of the art cantilever magnetometry. The obtained good agreement between model and experiment provides a valuable basis for the development of nanoelectromechanical systems in which magnetic interactions are relevant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.