Abstract

Indium oxide is chosen as the host material for doping Ti, V, and Cr transition metal ions. Theoretical calculations based on density functional theory within a local spin density approximation show that V–V separation of 5.6Å is more stable with a strong ferromagnetic coupling. Our calculations clearly predict that substitution of vanadium for indium should yield ferromagnetism in In2O3. Experimentally, (In0.95TM0.05)O3 (TM=Ti,V,Cr) were prepared using sol-gel as well as solid state reaction methods. Superconducting quantum interference device magnetization measurements as a function of field and temperature clearly showed that the V and Cr doped samples are ferromagnetic with Curie temperature well above room temperature. Thin films deposited by pulsed laser ablation using these materials on sapphire substrates exhibit a preferred 222 orientation normal to the plane of the film. The magnetic moment for (In0.95V0.05)O3 film deposited in 0.1mbar oxygen pressure was estimated to be 1.7μB∕V and is comparable to the theoretical value of 2μB∕V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.