Abstract
Cu2+ doped TiO2 nanocrystals were synthesized using dispersions of titania nanotubes in the presence of Cu2+ ions as a precursors. The morphologies of nanotubular titania precursors and resulted Cu2+ doped TiO2 nanocrystals were characterized by TEM. Structural and optical properties were studied by XRPD analysis and UV–vis spectroscopy in reflectance mode, respectively. Their magnetic properties were investigated using SQUID magnetometer. Tetragonal anatase crystalline structure was confirmed in all synthesized samples. Polygonal (d∼15nm) and spheroid like (length, up to 90nm) Cu2+ doped TiO2 nanocrystals in samples synthesized at different pHs were observed by TEM. Ferromagnetic ordering with almost closed loop (Hc∼200Oe) was detected in all Cu2+ doped TiO2 nanoparticle films. The saturation magnetization values varied depending on the Cu2+ concentration, nanoparticles shape, size and consequently different number of oxygen vacancies. This study revealed possibility to control magnetic ordering by changing the shape/aspect ratio of Cu2+ doped TiO2 nanocrystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.