Abstract

Nanoscale dual-wavelength lasers are attractive for their potential applications in highly integrated photonic devices. Here we report the growth of nanoribbon lateral heterostructures made of a CdS(x)Se(1-x) central region with epitaxial CdS lateral sides using a multistep thermal evaporation route with a moving source. Under laser excitation, the emission of these ribbons indicates sandwich-like structures along the width direction, with characteristic red emission in the center and green emission at both edges. More importantly, dual-wavelength lasing with tunable wavelengths is demonstrated at room temperature based on these single-nanoribbon heterostructures for the first time. These achievements represent a significant advance in designing nanoscale dual-wavelength lasers and have the potential to open up new and exciting opportunities for diverse applications in integrated photonics, optoelectronics, and sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.