Abstract
Aiming at the difficulty of early fault vibration signal extraction of rolling bearing, a method of fault weak signal extraction based on variational mode decomposition (VMD) and quantum particle swarm optimization adaptive stochastic resonance (QPSO-SR) for denoising is proposed. Firstly, stochastic resonance parameters are optimized adaptively by using quantum particle swarm optimization algorithm according to the characteristics of the original fault vibration signal. The best stochastic resonance system parameters are output when the signal to noise ratio reaches the maximum value. Secondly, the original signal is processed by optimal stochastic resonance system for denoising. The influence of the noise interference and the impact component on the results is weakened. The amplitude of the fault signal is enhanced. Then the VMD method is used to decompose the denoised signal to realize the extraction of fault weak signals. The proposed method was applied in simulated fault signals and actual fault signals. The results show that the proposed method can reduce the effect of noise and improve the computational accuracy of VMD in noise background. It makes VMD more effective in the field of fault diagnosis. The proposed method is helpful to realize the accurate diagnosis of rolling bearing early fault.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.