Abstract

Roll bonding (RB) of bimetal laminates is a solid phase method of bonding and has been widely used in the manufacturing of layered strips. This process is widely used for brazing sheet for automotive, aerospace, vessel, and electrical industries. In this study, 1-mm bimetallic aluminum 1050 and pure copper (Al/Cu) laminates were produced using the roll bonding (RB) process. The RB process was carried out with thickness reduction ratios of 10%, 20%, and 30%, separately. Particular attention was focused on the bonding of the interface between Al and Cu layers. The optimization of thickness reduction ratios was obtained for the improvement of the bond strength of bimetallic laminates during the RB process. Also, the RB method was simulated using finite element simulation in ABAQUS software. Finite Element (FE) simulation was used to model the deformation of bimetallic laminates for various thickness reduction ratios, rolling temperatures, and tensile stresses. Particular attention was focused on the rolling pressure of Al and Cu layers in the simulation. The results show that the stress distribution in the bimetal Al/Cu laminates is an asymmetrical distribution. Moreover, the bonding strength of samples was obtained using the peeling test. Also, the fracture surface of roll bonded samples around the interface of laminates after the tensile test was studied to investigate the bonding quality by scanning electron microscopy (SEM).

Highlights

  • Today, there is a growing need for the use of bimetal laminates with special capabilities and characteristics, including high mechanical properties, corrosion resistance, light weight, good wear resistance, and thermal stability

  • Among the composite material technologies, Accumulative Roll Bonding (ARB) is an important technique used to produce laminates because the rolling pressure can create a mechanical bond between the metal such as St/Br [4], Cu/Fe [5], Cu/Ag [6], Al/Zn [7], Al/Ni [8], Al/Fe [9], Al/Mn [10], etc

  • We report an investigation of the rolling of bimetallic Al/Cu laminates

Read more

Summary

Introduction

There is a growing need for the use of bimetal laminates with special capabilities and characteristics, including high mechanical properties, corrosion resistance, light weight, good wear resistance, and thermal stability. Bimetallic Al/Cu laminates have become increasingly popular for engineering applications since they usually possess several desirable properties such as excellent mechanical properties, corrosion resistance, and low density. They are employed in various fields such as the aerospace, automotive, vessel, and electrical industries [1,2,3]. Among the composite material technologies, Accumulative Roll Bonding (ARB) is an important technique used to produce laminates because the rolling pressure can create a mechanical bond between the metal such as St/Br [4], Cu/Fe [5], Cu/Ag [6], Al/Zn [7], Al/Ni [8], Al/Fe [9], Al/Mn [10], etc. Different severe plastic deformation (SPD) techniques as special processes to produce ultra-fine grain (UFG) materials have been developed, such as accumulative roll bonding (ARB) [11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.