Abstract

Activated Ras utilises several downstream pathways, including the mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway and the phosphoinositide 3-kinase (PI-3k)/Akt pathway, to promote cell proliferation and to inhibit apoptosis. To investigate which pathway plays a major role in Ras-induced drug resistance to chemotherapeutic agents in breast cancer cells, we transfected MCF7 breast cancer cells with a constitutively active H-RasG12V and examined the toxicities of three commonly used breast cancer chemotherapeutic agents, paclitaxel, doxorubicin, and 5-fluorouracil in these cells under the conditions that PI-3K or MEK were selectively inhibited by their respective specific inhibitors or dominant negative expression vectors. We found that Ras-mediated drug resistance is well correlated with resistance to apoptosis induced by anticancer agents in MCF7 breast cancer cells. Although inhibition of MEK/MAPK or PI-3K/Akt can each enhance the cytotoxicity of paclitaxel, doxorubicin, or 5-fluorouracil, inhibition of the PI-3K/Akt pathway seems to have a greater effect than inhibition of the MEK/MAPK pathway in reversing Ras-mediated drug resistance. Our results indicate that the PI-3K pathway may play a more important role in receptor tyrosine kinase-mediated resistance to chemotherapy and suggest that PI-3K/Akt might be a critical target molecule for anticancer intervention in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.