Abstract

The essentials of the exceptionally high quantum efficiency (93%) of photocatalytic hydrogen production on Pt–PdS/CdS have been investigated by studying the roles of the dual cocatalysts Pt and PdS in photocatalysis. In situ photoelectrochemical measurements, photoluminescence spectroscopy and high-resolution transmission electron microscopy characterizations indicate that the exceptionally high QE can be attributed to vital factors including PdS and Pt as the oxidation and reduction cocatalysts, respectively; the efficient utilization of the photogenerated electrons, including those at the shallow trap states of CdS, for photocatalytic reactions; and the facial charge transfer between the cocatalysts and CdS through atomic heterojunctions. Combinations of Pt with other metal sulfides and PdS with other noble metals as dual cocatalysts also show an evident synergetic effect on the activity. The co-loading of Pt and PdS on other sulfide semiconductors results in the same enhancement of photocatalytic activity. It is proposed that the crucial role of dual cocatalysts is general for photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.