Abstract

Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.