Abstract

The vasovagal reaction is thought to be caused by sympathetic withdrawal and vagal augmentation. While measurements of muscle sympathetic nerve activity support sympathetic withdrawal in tilt induced syncope, the results of previous attempts to quantify vagal control using spectral analyses of heart rate variability (HRV) remain controversial. The sampling period used in the HRV studies is related to the discordant results. In the present study, HRV was computed every second using wavelet transformation to clarify the role of vagal control in tilt induced syncope during the 80-degree head-up tilt test (positive: 10 patients with vasovagal syncope; negative: 10 patients with vasovagal syncope, and 10 control subjects). Autonomic modulations were assessed using the absolute power of the low frequency (LF) (0.04-0.15 Hz) and high frequency (HF) (0.15-2.00 Hz) oscillatory components of R-R variability. Although the LF did not change during the tilt procedure, a decrease in the systolic arterial pressure (SAP) and increases in the R-R interval and HF were observed for the last 30 seconds before the tilt induced syncope in the tilt-positive group. Analyzing the hemodynamic measurements and spectral indices for the last 5 minutes preceding the tilt induced syncope, the study found that the SAP, R-R interval, and HF changed simultaneously during the 30-second period immediately before the tilt induced syncope. Further, the HF was positively correlated with the R-R interval and negatively correlated with the SAP. In conclusion, continuous spectral analysis of the R-R interval demonstrated increased vagal influence on the heart in tilt induced syncope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.