Abstract

Employing a recently developed statistical mechanical theory, the α-helix-to-random-coil transition in two-chain, coiled coils is shown to possess many of the essential qualitative features of the equilibrium folding process in globular proteins. The role of short vs. long range interactions in stabilizing the native structure is examined. We demonstrate in doubly crosslinked coiled coils how, due to the role of loop entropy, an intrinsically continuous conformational transition evolves into one well approximated by an all-or-none transition. Thus the present work points out the crucial role played by loop entropy in the conformational transition in coiled coils in particular and perhaps in globular proteins in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.