Abstract

Synthesis of vertically aligned small diameter (single- and double-wall) carbon nanotube films on thermally oxidized n+-Si(001) wafers, with acetylene diluted with ammonia gas mixture using a microwave plasma-assisted chemical vapor deposition technique, is reported. Experiments show that by continuous reduction in the thickness of the iron catalyst film to ∼0.3–0.5nm, or alternately, smaller catalyst particles produces hollow concentric tubes with a fewer number of walls. Double- and single-wall carbon nanotubes with diameters ranging from 1 to 5nm were identified using transmission electron microscopy and Raman spectroscopy. A relatively higher deposition temperature (∼850°C) in conjunction with a controlled catalyst and rapid growth (<40s) allowed for the growth of well-graphitized, high areal density (∼1012-1013∕cm2) nanotubes with reduced amorphous carbon and iron. Our results also indicate that the base growth is the most appropriate model to describe the growth mechanism for the nanotube films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.