Abstract

Quantum chemical methods at the Gaussian-2 and -3 levels of theory have been used to investigate the reactions between H(2)S, SO(2), and S(2)O such as might occur in the front-end furnace of the Claus process. The direct reaction between H(2)S and SO(2) occurs via a 5-centered transition state with an initial barrier of approximately 135 kJ mol(-1) and an overall barrier of approximately 153 kJ mol(-1) to produce S(2)O and H(2)O. We indicate approximate values here because there are a number of isomers in the reaction pathway that have barriers slightly different from those quoted. The presence of a water molecule lowers this by approximately 60 kJ mol(-1), but the van der Waals complex required for catalysis by water is thermodynamically unfavorable under the conditions in the Claus reactor. The direct reaction between H(2)S and S(2)O can occur via two possible pathways; the analogous reaction to H(2)S + SO(2) has an initial barrier of approximately 117 kJ mol(-1) and an overall barrier of approximately 126 kJ mol(-1) producing S(3) and H(2)O, and a pathway with a 6-centred transition state has a barrier of approximately 111 kJ mol(-1), producing HSSSOH. Rate constants, including a QRRK analysis of intermediate stabilization, are reported for the kinetic scheme proposed here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.