Abstract
The oxidation by H2 O2 of the human phospholipid hydroperoxide glutathione peroxidase (GPx4), used as a model peroxidase selenoenzyme, as well as that of its cysteine (Cys) and tellurocysteine (Tec) mutants, was investigated in silico through a combined classic and quantum mechanics approach to assess the role of the different chalcogens. To perform this analysis, new parameters for selenocysteine (Sec) and tellurocysteine (Tec) were accurately derived for the AMBER ff14SB force field. The oxidation represents the initial step of the antioxidant activity of GPx, which catalyzes the reduction of H2 O2 and organic hydroperoxides by glutathione (GSH). A mechanism involving a charge-separation intermediate is feasible for the Cys and Sec enzymes, leading from the initial thiol/selenol form to sulfenic/selenenic acid, whereas for the Tec mutant a direct oxidation pathway is proposed. Activation strain analyses, performed for Cys-GPx and Sec-GPx, provided insight into the rate-accelerating effect of selenium as compared to sulfur and the role of specific amino acids other than Cys/Sec that are typically conserved in the catalytic pocket.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.