Abstract

Bone marrow stromal cells are potent providers of stimuli that induce proliferation of B-cell precursors. We proposed that stromal cells play a role in protecting B-lineage cells from corticosteroid-induced apoptosis. We found that stromal cells protected B-cell precursors from dexamethasone-induced apoptosis, but this did not strictly correlate with interleukin-7 (IL-7) production. To determine if stromal-derived factors were involved in protection of B-cell precursors from apoptosis, we examined the activity of three lymphopoietic growth factors: IL-7, stem cell factor (SCF), and insulin-like growth factor-1 (IGF-1). Either IL-7 or IGF-1 alone protected B-cell precursors from dexamethasone-induced apoptosis. The combined activities of IGF-1 and IL-7 were additive rather than synergistic. SCF did not protect B-cell precursors from apoptosis. Aging altered the ability of B-cell precursors to respond to protective stimuli induced by IL-7 and IGF-1. Precursors from aged animals were deficient in ability to modulate expression of apoptosis regulatory genes Bax, Bcl-2, and Bcl-x in comparison to B-cell precursors from young animals. Taken together, these results suggest that stromal cells can protect B-lineage precursors from a corticosteroid-induced apoptotic signal, protection is mediated by stromal-derived cytokines, and aging decreases the ability of B-cell precursors to respond efficiently to protective stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.