Abstract

Signal transduction pathways leading to angiopoietin 1 (Ang1)-induced capillary morphogenesis by endothelial cells remain poorly defined. Angiogenic cellular responses by endothelial cells may be modulated in vivo by chronic hypoxia, such as that induced by tumors. Here, we studied Ang1-induced capillary morphogenesis in human umbilical-vein endothelial cells (HUVECs) cultured chronically under normoxic (21% oxygen) or hypoxic (1.5% oxygen) conditions. Downregulation of Src using a small interfering RNA (siRNA) inhibited Ang1-induced capillary morphogenesis of HUVECs cultured under both conditions by blocking cell spreading and protrusion. Ang1 upregulated the Src-dependent secretion of vascular endothelial growth factor-A (VEGF-A). Blockade of endogenous VEGF-A also inhibited Ang1-induced capillary morphogenesis. Addition of exogenous VEGF-A restored cell spreading and protrusion, leading to Ang1-induced capillary morphogenesis of Src siRNA-treated HUVECs, suggesting that Ang1-induced VEGF-A secretion through Src was required for capillary morphogenesis. PP2 inhibited both Ang1-induced capillary morphogenesis and Src activation in HUVECs cultured under normoxic conditions, but the PP2 activity was significantly impaired in HUVECs cultured under hypoxic conditions. Expression of multidrug resistance-associated protein 1 (MRP 1) was upregulated in hypoxic HUVECs, and treatment with MRP 1 siRNA restored the inhibitory action of PP2. Taken together, our results suggest that Ang1 induces capillary morphogenesis in HUVECs through Src-dependent upregulation of endogenous VEGF-A. Conditions of chronic hypoxia impaired the effect of PP2, possibly via MRP 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.