Abstract
Segmentation is well known to digest the food rich in proteins, starch, and lipids; however, the mechanism leading to the digestion remains unclear. In this study, a theoretical model for segmental contractions of the small intestine is developed using lubrication method to explore the mechanisms involved. Here, the nonlinear partial differential equations governing the fluid flow were normalized in viscous regime and solved semi-analytically for a power law fluid under long wavelength approximation on a MatlabTM platform. Study indicates that shearing is highest at the 1st and 4th mid-occlusion in comparison to 2nd and 3rd mid-occlusion. Parametric study indicates that the flow is sensitive to – the span of segmentation or wavelength of the wave, occlusion of the wave and frequency of the contraction; with shearing being highest for dilatants. Shearing is more prominent at higher occlusion (>50 %) and frequency (>6Hz). Further, mixing is more prominent at the steep regions of the wave; having intensity of mixing highest for the outer waves in comparison to waves at mid-region of the segmentation. The power demand is found to be greater in segmentation and has the following precedence - frequency, wavelength, flow behavior index, and occlusion (up to 80 %). Further, multiplicity of the wave gives rise to multiple zones of mixing which increases the rate of mixing of the contents. Suggesting that, the segmentation primarily serves the purpose of mixing. The study will be useful to explore novel therapeutic strategies of managing patients suffering from various motility-associated disorders of the small intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.