Abstract

In addition to myelin loss and oligodendrocyte injury, axonal damage is a major cause of irreversible neurological disability in multiple sclerosis (MS). A series of studies have demonstrated that Rho kinase (ROCK) is involved in synaptic plasticity of neurons. Here, we found that ROCK activity in MS serum was elevated compared with serum from healthy controls. In experimental autoimmune encephalomyelitis (EAE), ROCK activity was also increased in serum, spleen, brain and spinal cord. Neuron injury with scratch and TNF-α stimulation induced the up-regulation of ROCK activity. When serum of MS patients was co-cultured with mouse cortical neurons in vitro, MS serum caused neurite shortening and reduction of cell viability, while the addition of Fasudil partially restored synaptic morphology of neurons, revealing that MS sera inhibited neurite outgrowth and synapse formation. The expression of synaptophysin was decreased in MS serum-neurons, and elevated in the presence of Fasudil. In contrast, the expression of phosphorylated collapsin response mediator protein-2 (CRMP-2) was elevated in MS serum-neurons and decreased in the presence of Fasudil. However, the addition of anti-ROCK I/II mixed antibodies in MS serum partially declined ROCK activity, but did not improve neurite outgrowth of neurons, revealing that Fasudil should prevent synaptic damage possibly through inhibiting intracellular ROCK activation mediated with MS serum. Our results indicate that axonal loss in MS may be related to increased ROCK activity. Fasudil could promote synaptogenesis and thus may contribute to preventing irreversible neurological disability associated with MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.