Abstract

The oxygen-evolution reaction (OER) through water oxidation is an inevitable reaction for water splitting toward storing energy. However, OER is a four-electron and slow reaction, which is also a bottleneck for water splitting. To find the role of Pt and PtO2 on the OER in the presence of Fe, the electrochemistry of Pt foil and PtO2 is investigated in the absence/presence of K2FeO4 as a soluble Fe salt at pH ≈ 13. After the addition of K2FeO4, a remarkable increase in the OER is recorded in the presence of Pt or PtO2. The obtained catalysts were characterized by operando visible spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, electron-spin resonance spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods. KOH solutions usually contain Fe and/or Ni impurities. It is found that neither Pt nor PtO2 is an OER catalyst in a Ni/Fe-free KOH, and even at an overpotential of 570 mV in purified KOH (pH ≈ 13), no clear OER was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.