Abstract

A subset of papillary renal cell carcinomas (RCC) is characterized by the expression of a TFE3 fusion protein, where the fusion partner can be any of the several proteins identified so far such as PSF (PTB associated splicing factor), NonO, PRCC, CLTC and ASPL. These proteins result from chromosomal translocations involving the TFE3 gene located on the X chromosome. Our present study documents the central role of PSF-TFE3 in oncogenic transformation. We show that the inhibition of PSF-TFE3 expression through siRNA or shRNA leads to impaired growth, proliferation, invasion potential and long-term survival of UOK-145 papillary renal carcinoma-derived cells, which endogenously express PSF-TFE3. The oncogenic potential of PSF-TFE3 became evident by stable expression of PSF-TFE3 in NIH-3T3 mouse fibroblast cells, which leads to the acquisition of anchorage-independent growth as revealed by soft agar assay. In addition, the expression of PSF-TFE3 in normal renal proximal tubular epithelial cells from where such tumors originate leads to dedifferentiation and loss of some key functional proteins, which may reflect an initial step in the multistep process of tumor development. This suggests that the expression of PSF-TFE3 in renal epithelial cells plays an important role in the initiation and maintenance of oncogenic phenotype in papillary RCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.