Abstract

The aim of the present study was to examine the role of protein kinase G (G-kinase) in the mechanism of endogenous nitric oxide (NO) deficiency-induced supersensitivity to the nitrovasodilator sodium nitroprusside (SNP) in isolated rat pulmonary artery. Tension experiments and cGMP measurements were carried out on isolated rat pulmonary artery to assess the influence of NO deficiency, caused by either N-nitro-L-arginine methyl ester (L-NAME) treatment or endothelium removal on the vasodilator potency of SNP. Sodium nitroprusside was more potent (pD2; 8.21 +/- 0.04) in relaxing arterial rings treated with 100microM L-NAME or denuded of the endothelium (pD2; 8.44 +/- 0.11) compared with the endothelium-intact controls (pD2; 7.61 +/- 0.05). Similarly, the tissue sensitivity to 8-Br-cGMP, a G-kinase activator, was significantly (P < 0.05) greater after L-NAME treatment (pD2; 5.04 +/- 0.09) or endothelium removal (pD2; 5.28 +/- 0.11) in comparison with the controls (pD2; 4.22 +/- 0.17). On the other hand, dibutyryl cAMP, an activator of protein kinase A, was equipotent in dilating control (pD2; 4.14 +/- 0.04) and L-NAME-treated (pD2 4.21 +/- 0.05) vessels. Further, L-NAME treatment significantly (P < 0.05) decreased the basal cGMP but enhanced SNP (1 microM)-stimulated increase in the tissue cyclic nucleotide levels (271.8 +/- 39.93 pmol/mg protein versus control: 66.19 +/- 7.18 pmol/mg protein), indicating sensitization of soluble guanylyl cyclase to NO. The increased sensitivity of G-kinase to cGMP observed in the present study suggests a novel mechanism of supersensitivity in vascular smooth muscle to nitrovasodilators in acute NO deficiency. Further, it explains the influence of ambient cGMP in determining the sensitivity of G-kinase in vascular smooth muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.