Abstract

We investigated antibiotic resistance levels among blaNDM-positive (n = 9) and -negative (n = 65) A. baumannii clinical isolates collected in 2010 and 2015 from Alexandria Main University Hospital, Egypt using disc diffusion and minimum inhibitory concentration (MIC) determination. Plasmids from blaNDM-positive isolates were transformed into a carbapenem-susceptible A. baumannii (CS-AB) isolate to assess the role of plasmid transfer in mediating carbapenem resistance. Imipenem, meropenem, and ertapenem MIC90 values against blaNDM-positive isolates were 128, > 256, and 256 µg/mL, respectively. Plasmid isolation and polymerase chain reaction revealed that blaNDM was plasmid mediated. The plasmids were electroporated into the cells of a CS-AB isolate at an efficiency of 1.3 × 10–8 to 2.6 × 10–7, transforming them to blaNDM-positive carbapenem-resistant cells with an imipenem MIC increase of 256-fold. In addition to carbapenem resistance, the blaNDM-positive isolates also exhibited higher levels of cephalosporins, tetracycline, aminoglycosides, fluoroquinolones, and colistin resistance than the blaNDM-negative isolates. Acquisition of blaNDM-carrying plasmids dramatically increased imipenem resistance among A. baumannii isolates. Intriguingly, blaNDM-positive isolates also showed a high degree of resistance to antibiotics of different classes. The potential co-existence of different resistance determinants on A. baumannii plasmids and their possible transfer owing to the natural competence of the pathogen are especially alarming. More effective infection control and antibiotic stewardship programs are needed to curb the spread and treat such infections in both hospital and community settings.Electronic supplementary materialThe online version of this article (10.1007/s13205-020-2157-y) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.