Abstract

Encapsulation of drugs in nano- and microparticles has been known as a promising approach for efficient drug delivery. It has been well established that adjusting the physiochemical properties of these carriers concerning the specific condition of each disease will improve therapeutic efficacy. The role of particle characteristics including composition, size, surface chemistry, density, elasticity on successful drug delivery has been well recognized. In the last few decades, particle shape arose as an important property playing a profound role in drug delivery efficiency. Particle shape plays its role by affecting physiological interactions including opsonization, internalization, margination, circulation half-life, etc. Delivery of a drug carrier to its target site is a desirable goal in drug delivery, and we were wondering whether engineering the particle geometry would bring us closer to this goal. This article has aimed to review researches studying the impact of particle shape on its interactions with the physiological environment and to focus on the role of particle shape in targeted drug delivery to various sites including liver, spleen, lung, brain, and also tumor sites of different tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.