Abstract
Unlike the wild type, the mutant Aspergillus carbonarius synthesized a yellow pigment, partially saturated canthaxanthin (PSC) when the growth medium acidified to low pH. Since the pigment found pharmaceutical applications, the possible mechanism involved in its ability to grow at extreme acidic conditions is described. To understand the mutation in the pathway, specific inhibitors affecting carotenoid biosynthesis were used in the medium and PSC synthesis and cell integrity were studied. Results suggested that the possible occurrence of mutation in the isoprenoid pathway for higher production of carotenoid as well as ergosterol caused the mutant to grow in extremely acidic conditions. The results also suggested that the flow of carbon for sterol biosynthesis and that of carotenoids are dependent. The deposition of carotenoids and ergosterol in the cell membrane causing the cells to maintain pH homeostasis under the acidic growth conditions is of significant importance. In A. carbonarius, understanding the cause of stress induced PSC accumulation is essential for efficient expression and production of the pharmaceutically significant carotenoid and this will further facilitate research into the role of carotenoids in stress tolerance of other filamentous fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.