Abstract

The role of oxygen vacancies in temperature-dependent photoluminescence of SnO2 nanowires was investigated by X-ray absorption spectroscopy. Two types of oxygen vacancies are present in the nanowires: at out-of-plane sites and at in-plane sites; both play crucial roles in the temperature dependence of the photoluminescence. Oxygen vacancies at in-plane sites participate in photon emission at low temperature, whereas those at out-of-plane sites result in photoluminescence at room temperature. Accordingly, the luminescence color changes from orange (630 nm, 1.93 eV) to green (515 nm, 2.4 eV) at 100 K. The color change is accompanied with a notable change in the oxygen K-edge X-ray absorption spectra. The scanning transmission X-ray microscopy results indicate that more oxygen vacancies at in-plane sites are present in the surface region than in the bulk region, whereas more oxygen vacancies at out-of-plane sites are present in the bulk region than in the surface region. Overall, the results demonstrate that oxygen-vacancy-mediated fluorescence properties of SnO2 nanowires are temperature-dependent; i.e., the photoluminescence mechanisms of the nanowires are mediated by oxygen vacancies at different sites, and the bicolor fluorescence originates from charge transfer between the states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.