Abstract

Multiple types of voltage-activated calcium (Ca(2+)) channels are present in all nerve cells examined so far; however, the underlying functional consequences of their presence is often unclear. We have examined the contribution of Ca(2+) influx through N- and L- type voltage-activated Ca(2+) channels in sympathetic neurons to the depolarization-induced activation of tyrosine hydroxylase (TH), the rate-limiting enzyme in norepinephrine (NE) synthesis, and the depolarization-induced release of NE. Superior cervical ganglia (SCG) were decentralized 4 days prior to their use to eliminate the possibility of indirect effects of depolarization via preganglionic nerve terminals. The presence of both omega-conotoxin GVIA (1 microM), a specific blocker of N-type channels, and nimodipine (1 microM), a specific blocker of L-type Ca(2+) channels, was necessary to inhibit completely the stimulation of TH activity by 55 mM K(+), indicating that Ca(2+) influx through both types of channels contributes to enzyme activation. In contrast, K(+) stimulation of TH activity in nerve fibers and terminals in the iris could be inhibited completely by omega-conotoxin GVIA alone and was unaffected by nimodipine as previously shown. K(+) stimulation of NE release from both ganglia and irises was also blocked completely when omega-conotoxin GVIA was included in the medium, while nimodipine had no significant effect in either tissue. These results indicate that particular cellular processes in specific areas of a neuron are differentially dependent on Ca(2+) influx through N- and L-type Ca(2+) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.