Abstract

Extensive studies have been conducted on bioretention filter media applied in best management practices for stormwater runoff treatment. To date, more reported studies are focused on pollutants elimination such as suspended solids and nutrients. There has been limited research on pathogen removal from stormwater runoff. More focused studies on pathogen removal are therefore required if the intended stormwater is harvested for indirect potable use. In this study, water treatment residuals (WTR), a recycled biofilter media was surface-modified with metals to assess its potential for E. coli removal from stormwater runoff. To achieve this goal, four types of modified WTRs, prepared using iron, copper, platinum, and silver as antibacterial agents, were tested in parallel batch tests. After the cost-effectiveness evaluation among the four modified WTRs for bacterial removal, Fe2O3- and CuO-WTRs were shortlisted for further mechanism and stability studies. Stable antibacterial performances (E. coli log removal of 0.58 ± 0.04 and 0.90 ± 0.04, respectively) were achieved using the Fe2O3- and CuO-WTRs under intermittent synthetic and natural stormwater runoff conditions. No significant metal leaching was observed over prolonged continuous treatment. The experimental results showed the bio-adsorption onto the surface modified Fe2O3- and CuO-WTR was a key mechanism for E. coli removal followed by E. coli inactivation at solid-liquid interface caused by the antibacterial effect of metal coatings (where CuO was reported to have higher biotoxicity than Fe2O3). These findings clearly suggested the potential of CuO-modified WTR for pathogen removal in stormwater treatment practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.