Abstract
Recent observation and theoretical investigations have led to the significance of electrostatic ion cyclotron (EIC) waves in the electrodynamics of acceleration process. The instability is one of the fundamental of a current carrying magnetized plasma. The EIC instability has the lowest threshold current among the current driven instabilities. On the basis of local analysis where inhomogeneities like the magnetic shear and the finite width current channel, have been ignored which is prevalent in the magnetospheric environment. On the basis of non-local analysis interesting modification has been incorporated by the inclusion of magnetic shear. In this paper we provide an analytical approach for the non-local treatment of current driven electrostatic waves in presence of parallel electric field. The growth rate is significantly influenced by the field aligned electron drift. The presence of electric field enhances the growth of EIC waves while magnetic shear stabilizes the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.