Abstract

PurposeDifferentiating glioma recurrence from radiation necrosis remains a great challenge. We conducted a meta-analysis to evaluate the diagnostic quality of magnetic resonance spectroscopy (MRS) in differentiating glioma recurrence from radiation necrosis. MethodsStudies about evaluation of MRS for the differential diagnosis of glioma recurrence from radiation necrosis were systematically searched in PubMed, Embase and Chinese Biomedical databases up to May 4, 2014. The data were extracted to perform heterogeneity test, threshold effect test and to calculate sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC). ResultsEighteen articles comprising a total sample size of 455 patients (447 lesions) with suspected glioma recurrence after radiotherapy, met all inclusion and exclusion criteria, and were included in our meta-analysis. Quantitative synthesis of studies showed that the pooled SEN and SPE for Cho/Cr ratio were 0.83 (95% CI: 0.77, 0.89) and 0.83 (95% CI: 0.74, 0.90). The area under the curve (AUC) under the SROC was 0.9001. The pooled SEN and SPE for Cho/NAA ratio were 0.88 (95% CI: 0.81, 0.93) and 0.86 (95% CI: 0.76, 0.93). The AUC under the SROC was 0.9185. ConclusionThis meta-analysis shows that MRS alone has moderate diagnostic performance in differentiating glioma recurrence from radiation necrosis using metabolite ratios like Cho/Cr and Cho/NAA ratio. It is strongly recommended that MRS should combine other advanced imaging technologies to improve diagnostic accuracy. This article underlines the importance of implementing multimodal imaging trials and multicentre trials in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.