Abstract

Previous work in our laboratory has demonstrated that 19% of the lysine residues in the protein synthesis elongation factor (EF-1α) are methylated when the factor is purified from the mycelial form of the fungus Mucor racemosus. However, the same factor, when purified from spores of M. racemosus, is largely unmethylated. Despite its widespread occurrence in a great number of basic proteins, the functional significance of lysine N-methylation remains poorly understood. Spore and mycelial forms of EF-1α were therefore compared in a series of assays to determine their relative affinities for various substrates and cofactors known to interact with the factor during the elongation cycle. The results suggested that hypomethylated and fully methylated EF-1α had equal affinities for GTP, aminoacyl-tRNA, and ribosomes. Also, methylation did not appear to affect the accuracy of translation in an in vitro system. However, experiments did suggest that methylation may affect the ability of the factor to form complexes with other subunits (EF-1βγ) which are known to enhance the overall rate of protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.