Abstract

Oil spill and microplastic (MP) pollution are the main problems in the marine environment. After an oil spill, the oil film may be dispersed into the water column in the form of droplets under the action of ocean waves. In this study, the sea condition was simulated through the batch conical flask oscillation experiment. Merey crude oil was selected as experimental oil, and polyethylene (PE) and polystyrene (PS) were used as experimental MP. The effects of MP properties (type, concentration and size) on the dispersion of spilled oil were investigated. It is found that for each MP, the oil dispersion efficiency (ODE) increased rapidly at first and then tended to be stable, which all reached the maximum at 360 min. When the concentrations of PE and PS increased from 0 to 100 mg/L, the maximum ODE decreased from 32.64 % to 13.72 % and 10.75 %, respectively, indicating that the presence of MP inhibits the oil dispersion. At the same oscillation time, the volumetric mean diameter (VMD) of dispersed oil increased with the MP concentration. When the particle size of PE and PS increased from 13 to 1000 μm, the maximum ODE increased from 24.74 % to 31.49 % and 28.60 %, respectively. However, the VMD decreased with the size of MP. In addition, the time series of the oil adsorption rate by the MP were well fitted by the kinetic models. The results of this research deepen the understanding of the migration law of spilled oil to the marine environment in the presence of MP, and may further improve the ability of marine environmental scientists to predict the fate of oil spill.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.