Abstract

This investigation presents nanoindentation and microindentation creep analyses on polymer derived Si–C–O ceramic coatings at temperatures ranging from room temperature to 500 °C. The properties of focus include elastic modulus, hardness, creep exponent, and creep strain rate. Analyses show that at the nanoscopic length scale the deformation mechanism is dominated by dislocation climb and diffusion. With increase in length scale to microscale the thermal activation volume increases by approximately 10 times. The increase in free volume leads to the deformation mechanism switching to volumetric densification and dislocation pile up. An important physical effect analyzed is the effect of increase in temperature on the observed deformation mechanism. At the nanoscale, with increase in temperature, both hardness and elastic moduli show an increase. At the microscale, however, hardness reduces with increase in temperature. The indentation size effect is observed at both scales. However, at the nanoscale the indentation size is linked with strain hardening. At the microscale, a strain softening behavior is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.