Abstract

Infection of eukaryotic cells with α-herpesviruses results in the formation and secretion of infectious heavy particles (virions; H-particles) and non-infectious light particles (L-particles). Herpes simplex virus type 1 (HSV-1) H-particles consist of a genome-containing capsid surrounded by tegument proteins and a glycoprotein-rich lipid bilayer. Non-infectious L-particles are composed mainly of envelope and tegument proteins and are devoid of capsids and viral DNA. L-particles were first described in the early nineties and from then on investigated for their formation and role during virus infection. The development and secretion of L-particles occur simultaneously to the assembly of complete viral particles. HSV-1 L-particles are assembled by budding of condensed tegument into Golgi-delivered vesicles and are capable of delivering their functional content to non-infected cells. Thereby, HSV-1 L-particles contribute to viral pathogenesis within the infected host by enhancing virion infectivity and providing immune evasion functions. In this review we discuss the emergence of HSV-1 L-particles during virus replication and their biological functions described thus far.

Highlights

  • Eukaryotic cells secrete a wide spectrum of membrane-enclosed vesicles containing proteins, RNA, microRNA or DNA (D’Souza-Schorey and Clancy, 2012)

  • Prior studies demonstrated that the viral proteins pUL31 and pUL34 of Herpes simplex virus type 1 (HSV-1) and the swine α-herpesvirus pseudorabies virus (PrV) form a nuclear egress complex, which is required for budding and vesicle formation at the inner nuclear membrane (Klupp et al, 2007; Mettenleiter et al, 2013)

  • After translocation through the nuclear membrane into the cytoplasm, the non-enveloped α-herpesvirus capsids gain their final tegument via adding further components as well as remodeling existing tegument proteins (Figure 2, 3a)

Read more

Summary

Introduction

Eukaryotic cells secrete a wide spectrum of membrane-enclosed vesicles containing proteins, RNA, microRNA or DNA (D’Souza-Schorey and Clancy, 2012). Prior studies demonstrated that the viral proteins pUL31 and pUL34 of HSV-1 and the swine α-herpesvirus PrV form a nuclear egress complex, which is required for budding and vesicle formation at the inner nuclear membrane (Klupp et al, 2007; Mettenleiter et al, 2013).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.