Abstract

Abstract This study investigates the neural influence on the establishment and maintenance of muscle type-specific expression patterns of the three troponin (Tn) subunits, troponin T (TnT), troponin C (TnC), and troponin I (TnI) during postnatal development and in the adult rabbit. For this purpose, we followed changes in the expression of fast and slow TnT, TnC, and TnI isoforms at the protein and mRNA level in slow- and fast-twitch muscles. During postnatal development all fast Tn isoforms increased in fast-twitch muscle. Sequential transitions (TnT s→TnT 3f →TnT 1f) occurred in the TnT isoform pattern. These changes occured in parallel with sequential transitions in the pattern of myosin heavy chain (HC) isoforms. Neonatal slow-twitch muscle displayed more mature (slow) isoform patterns for both TnT subunits and myosin HCs than fast-twitch muscle. Although the expression of slow TnC in slow-twitch muscle required innervation, denervation had little effect on slow TnT and TnI which seemed to be controlled by an intrinsic program. In fast-twitch muscle, denervation enhanced the expression of all slow Tn subunit isoforms. In addition, it led to a pronounced increase of the slow TnT 2s isoform such that the amount of TnT 2s exceeded that of TnT 1s. The effects of denervation together with previous data on low-frequency stimulated muscle indicate that the expression of fast Tn isoforms in fast-twitch muscle is neurally controlled. The pattern of slow Tn isoforms in slow-twitch muscle seems to be regulated by an intrinsic program and, in addition, by neural influences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.